Qubit-qudit states with positive partial transpose release_6o4jjryrbjc3xai7hp7dgjyy7q

by Lin Chen, Dragomir Z. Djokovic

Released as a article .

2012  

Abstract

We show that the length of a qubit-qutrit separable state is equal to the max(r,s), where r is the rank of the state and s is the rank of its partial transpose. We refer to the ordered pair (r,s) as the birank of this state. We also construct examples of qubit-qutrit separable states of any feasible birank (r,s). We determine the closure of the set of normalized two-qutrit entangled states of rank four having positive partial transpose (PPT). The boundary of this set consists of all separable states of length at most four. We prove that the length of any qubit-qudit separable state of birank (d+1,d+1) is d+1. We also show that all qubit-qudit PPT entangled states of birank (d+1,d+1) can be built in a simple way from edge states. If V is a subspace of dimension k<d in the tensor product of C^2 and C^d such that V contains no product vectors, we show that the set of all product vectors in the orthogonal complement of V is a vector bundle of rank d-k over the projective line. Finally, we explicitly construct examples of qubit-qudit PPT states (both separable and entangled) of any feasible birank.
In text/plain format

Archived Files and Locations

application/pdf  275.3 kB
file_g6xiebjklff7lnsbg5wmdik3hy
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Archived
Type  article
Stage   submitted
Date   2012-09-29
Version   v1
Language   en ?
arXiv  1210.0111v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: af77f052-d7af-42f6-99c5-0222a9046182
API URL: JSON