Loop Schrödinger-Virasoro Lie conformal algebra release_6625x6hpsrhhrkq3utvl7oqmni

by Haibo Chen, Jianzhi Han, Yucai Su, Ying Xu

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 18 of 18 references (in 111ms)
[b0]

via fuzzy
Cohomology of Conformal Algebras
Bojko Bakalov, Victor G. Kac, Alexander A. Voronov
1999   Communications in Mathematical Physics
doi:10.1007/s002200050541 
[b1]

via grobid
Derivations, automorphisms and second cohomology of generalized loop Schrödinger-Virasoro algebras [article]
Haibo Chen, Guangzhe Fan, Jianzhi Han, Yucai Su
2015    pre-print
version:v1  arXiv:1509.01916v1 
web.archive.org [PDF]
[b2]

via grobid
S. Cheng, V. G. Kac, Conformal modules, Asian J. Math 1, 181-193 (1997).
[b3]

via grobid
A. D'Andrea, V. G. Kac, Structure theory of finite conformal algebras, Sel. Math 4, 377-418 (1998).
[b4]

via grobid
I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations: Nonlinear Science: Theory and Applications (Chichester: Wiley), 1993.
[b5]

via grobid
G. Fan, Y. Su, H. Wu, Loop Heisenberg-Virasoro Lie conformal algebra, J. Math. Phys 55, 123508 (2014).
[b6]

via fuzzy
The Lie Conformal Algebra of a Block Type Lie Algebra
Ming Gao, Ying Xu, Xiaoqing Yue
2015   Algebra Colloquium
doi:10.1142/s1005386715000322 
[b7]

via grobid
J. Han, J. Li, Y. Su, Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra, J. Math. Phys 50, 083504 (2009).
[b8]

via grobid
M. Henkel, Schrödinger invariance and strongly anisotropic critical systems, J. Stat. Phys 75, 1023-1029 (1994).
[b9]

via grobid
V. G. Kac, Formal distribution algebras and conformal algebras, Brisbane Congress in Math. Physics, 1997.
[b10]

via grobid
V. G. Kac, Vertex algebras for beginners, University Lecture Series Vol. 10, American Math- ematical Society, 1996.
[b11]

via grobid
J. Li, Y. Su, Representations of the Schrödinger-Virasoro algebras, J. Math. Phys 49, 053512 (2008).
[b12]

via fuzzy
Lie Conformal Algebra Cohomology and the Variational Complex
Alberto de Sole, Victor G. Kac
2009   Communications in Mathematical Physics
doi:10.1007/s00220-009-0886-1 
web.archive.org [PDF]
[b13]

via grobid
Y. Su, Low dimensional cohomology of general conformal algebras gc N , J. Math. Phys 45, 509-524 (2004).
[b14]

via grobid
Y. Su, L. Yuan, Schrödinger-Virasoro Lie conformal algebra, J. Math. Phys 54, 053503 (2013).
[b15]

via grobid
Y. Su, X. Yue, Filtered Lie conformal algebras whose associated graded algebras are iso- morphic to that of general conformal algebra gc 1 , J. Algebra 340, 182-198 (2011).
[b16]

via grobid
H. Wu, Q. Chen, X. Yue, Loop Virasoro Lie conformal algbera, J. Math. Phys 55, 011706 (2014).
[b17]

via fuzzy
UNITARY REPRESENTATIONS FOR THE SCHRÖDINGER–VIRASORO LIE ALGEBRA
XIUFU ZHANG, SHAOBIN TAN
2013   Journal of Algebra and its Applications
doi:10.1142/s0219498812501320 
web.archive.org [PDF]