Saharan dust event impacts on cloud formation and radiation over Western Europe release_5zxayfig4ng3lmhd2l3icxktzy

by M. Bangert, A. Nenes, B. Vogel, H. Vogel, D. Barahona, V. A. Karydis, P. Kumar, C. Kottmeier, U. Blahak

Published in Atmospheric Chemistry and Physics by Copernicus GmbH.

2012   Volume 12, p4045-4063

Abstract

<strong>Abstract.</strong> We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. <br><br> The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l<sup>−1</sup> during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. <br><br> Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to −75 W m<sup>−2</sup>. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80 W m<sup>−2</sup>, and the incoming long-wave radiation at the surface was increased significantly in the order of +10 W m<sup>−2</sup>. <br><br> The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of −0.2 to −0.5 K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to −1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.
In application/xml+jats format

Archived Files and Locations

application/pdf  10.5 MB
file_k2m7w62gwffkbkona6suu3hn4a
web.archive.org (webarchive)
web.archive.org (webarchive)
www.atmos-chem-phys.net (publisher)
application/pdf  5.6 MB
file_bclugz5g2ffsrjilvluzjdwvhi
publikationen.bibliothek.kit.edu (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2012-05-08
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  1680-7316
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 15db0e01-cfc2-4d1f-9937-dea780745698
API URL: JSON