Repeatability and reproducibility assessment in a large-scale population-based microbiota study: case study on human milk microbiota release_5zeag2oagvhnbjejn2jpwzdf6y

by Shirin Moossavi, Kelsey Fehr, Ehsan Khafipour, Meghan B. Azad

Published in Microbiome by Springer Science and Business Media LLC.

2021   Volume 9, Issue 1, p41

Abstract

<jats:title>Abstract</jats:title><jats:sec> <jats:title>Background</jats:title> Quality control including assessment of batch variabilities and confirmation of repeatability and reproducibility are integral component of high throughput omics studies including microbiome research. Batch effects can mask true biological results and/or result in irreproducible conclusions and interpretations. Low biomass samples in microbiome research are prone to reagent contamination; yet, quality control procedures for low biomass samples in large-scale microbiome studies are not well established. </jats:sec><jats:sec> <jats:title>Results</jats:title> In this study, we have proposed a framework for an in-depth step-by-step approach to address this gap. The framework consists of three independent stages: (1) verification of sequencing accuracy by assessing technical repeatability and reproducibility of the results using mock communities and biological controls; (2) contaminant removal and batch variability correction by applying a two-tier strategy using statistical algorithms (e.g. <jats:italic>decontam</jats:italic>) followed by comparison of the data structure between batches; and (3) corroborating the repeatability and reproducibility of microbiome composition and downstream statistical analysis. Using this approach on the milk microbiota data from the CHILD Cohort generated in two batches (extracted and sequenced in 2016 and 2019), we were able to identify potential reagent contaminants that were missed with standard algorithms and substantially reduce contaminant-induced batch variability. Additionally, we confirmed the repeatability and reproducibility of our results in each batch before merging them for downstream analysis. </jats:sec><jats:sec> <jats:title>Conclusion</jats:title> This study provides important insight to advance quality control efforts in low biomass microbiome research. Within-study quality control that takes advantage of the data structure (i.e. differential prevalence of contaminants between batches) would enhance the overall reliability and reproducibility of research in this field. </jats:sec>
In application/xml+jats format

Archived Files and Locations

application/pdf  1.6 MB
file_yilnqbrl45bcjofqnobioaggti
microbiomejournal.biomedcentral.com (web)
web.archive.org (webarchive)
application/pdf  1.7 MB
file_t5ifvjuw75cafnwl2hnlf5d3ju
prism.ucalgary.ca (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2021-02-10
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2049-2618
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: ceb06ae2-5851-4ae4-bff3-388a659652fd
API URL: JSON