Synthesis and Characterization of Multiferroic BiFeO3 for Data Storage release_5rugmazdcve6lkiyybo4xl34yy

by Kuldeep Chand Verma

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 110 references (in 109ms)
[b0]

via grobid
Baibich MN, Broto JM, Fert A, Nguyen F, Dau V, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J. Giant magnetoresistance of (001)Fe/ (001)Cr magnetic superlattices. Phys. Rev. Lett. 1988; 61, 2472-2475.
[ref=2]

via crossref
blank openlibrary
[ref=3]

via crossref-grobid
P Sharma , Q Zhang , D Sando , C H Lei , Y Liu , J Li , V Nagarajan , J Seidel (+ more)
2017   Adv
volume:3 
[ref=4]

via crossref
Electric toggling of magnets
Evgeny Y. Tsymbal
2012   Nature Materials
doi:10.1038/nmat3205  pmid:22169910 
[ref=5]

via crossref
Towards a magnetoelectric memory
Manuel Bibes, Agnès Barthélémy
2008   Nature Materials
doi:10.1038/nmat2189  pmid:18497843 
[ref=6]

via crossref
Multiferroic memories
J. F. Scott
2007   Nature Materials
doi:10.1038/nmat1868  pmid:17351613 
web.archive.org [PDF]
[ref=7]

via crossref
A new spin on magnetic memories
Andrew D. Kent, Daniel C. Worledge
2015   Nature Nanotechnology
doi:10.1038/nnano.2015.24  pmid:25740126 
web.archive.org [PDF]
[ref=8]

via crossref
Lattice Defects Induce Multiferroic Responses in Ce, La-Substituted BaFe0.01Ti0.99O3Nanostructures
Kuldeep Chand Verma, Ravinder Kumar Kotnala, D. D. Viehland
2016   Journal of The American Ceramic Society
doi:10.1111/jace.14130 
[ref=9]

via crossref
Magnetoelectric, Raman, and XPS Properties of Pb0.7Sr0.3[(Fe2/3Ce1/3)0.012Ti0.988]O3 and Pb0.7Sr0.3[(Fe2/3La1/3)0.012Ti0.988]O3 Nanoparticles
Kuldeep Chand Verma, Manoj Kumar, R. K. Kotnala
2013   Metallurgical and Materials Transactions. A
doi:10.1007/s11661-013-2063-6 
[ref=10]

via crossref
Tunnel junctions with multiferroic barriers
Martin Gajek, Manuel Bibes, Stéphane Fusil, Karim Bouzehouane, Josep Fontcuberta, Agnès Barthélémy, Albert Fert
2007   Nature Materials
doi:10.1038/nmat1860  pmid:17351615 
web.archive.org [PDF]
[ref=11]

via crossref
Tailoring the multiferroic behavior in BiFeO3 nanostructures by Pb doping
Kuldeep Chand Verma, R. K. Kotnala
2016   RSC Advances
doi:10.1039/c6ra12949h 
web.archive.org [PDF]
[ref=12]

via crossref
The evolution of multiferroics
Manfred Fiebig, Thomas Lottermoser, Dennis Meier, Morgan Trassin
2016   Nature Reviews Materials
doi:10.1038/natrevmats.2016.46 
[ref=13]

via crossref
Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
I. Gross, W. Akhtar, V. Garcia, L. J. Martínez, S. Chouaieb, K. Garcia, C. Carrétéro, A. Barthélémy (+ more)
2017   Nature
doi:10.1038/nature23656  pmid:28905889 
[ref=14]

via crossref-grobid
Multiferroics and magnetoelectrics: thin films and nanostructures
L W Martin , S P Crane , Y H Chu , M B Holcomb , M Gajek , M Huijben , C H Yang , N Balke (+ more)
2008   J. Phys.: Condens. Matter
volume:20 
[ref=15]

via crossref
Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material
R. Safi, H. Shokrollahi
2012   Progress in Solid State Chemistry
doi:10.1016/j.progsolidstchem.2012.03.001 
[ref=16]

via crossref
Synthesis of BiFeO3by Wet Chemical Methods
Sverre M. Selbach, Mari-Ann Einarsrud, Thomas Tybell, Tor Grande
2007   Journal of The American Ceramic Society
doi:10.1111/j.1551-2916.2007.01937.x 
[ref=17]

via crossref
Low-temperature synthesis of BiFeO3 nanopowders via a sol–gel method
Jia-Huan Xu, Hua Ke, De-Chang Jia, Wen Wang, Yu Zhou
2009   Journal of Alloys and Compounds
doi:10.1016/j.jallcom.2008.04.090 
[ref=18]

via crossref
Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method
M. Yasin Shami, M.S. Awan, M. Anis-ur-Rehman
2011   Journal of Alloys and Compounds
doi:10.1016/j.jallcom.2011.08.063 
[ref=19]

via crossref
Hydrothermal synthesis and magnetic properties of single-crystalline BiFeO3 nanowires
Bing Liu, Binbin Hu, Zuliang Du
2011   Chemical Communications
doi:10.1039/c1cc11896j  pmid:21687873 
web.archive.org [PDF]
[ref=20]

via crossref
Synthesis and characterization of Bismuth ferrite (BiFeO 3 ) nanoparticles by solution evaporation method
A. Manzoor, A.M. Afzal, M. Umair, Adnan Ali, M. Rizwan, M.Z. Yaqoob
2015   Journal of Magnetism and Magnetic Materials
doi:10.1016/j.jmmm.2015.05.066 
[ref=21]

via crossref
Microwave-assisted synthesis of BiFeO3 nanoparticles with high catalytic performance in microwave-enhanced Fenton-like process
Shuo Li, Guangshan Zhang, Heshan Zheng, Nannan Wang, Yongjie Zheng, Peng Wang
2016   RSC Advances
doi:10.1039/c6ra12728b 
[ref=22]

via crossref
Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications
Upendra A. Joshi, Jum Suk Jang, Pramod H. Borse, Jae Sung Lee
2008   Applied Physics Letters
doi:10.1063/1.2946486 
web.archive.org [PDF]
[ref=23]

via crossref
Room-temperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process
Jiangtao Wu, Shaoyu Mao, Zuo-Guang Ye, Zhaoxiong Xie, Lansun Zheng
2010   Journal of Materials Chemistry
doi:10.1039/c0jm00729c 
web.archive.org [PDF]
[ref=24]

via crossref
Self-assembled multiferroic epitaxial BiFeO3–CoFe2O4 nanocomposite thin films grown by RF magnetron sputtering
Tae Cheol Kim, Shuchi Ojha, Guo Tian, Seung Han Lee, Hyun Kyu Jung, Jun Woo Choi, Lior Kornblum, Frederick J. Walker (+ more)
2018   Journal of Materials Chemistry C
doi:10.1039/c8tc01192c 
[ref=25]

via crossref
Polymer-directed synthesis and magnetic property of nanoparticles-assembled BiFeO3 microrods
Lei Zhang, Xiao-Feng Cao, Ying-Li Ma, Xue-Tai Chen, Zi-Ling Xue
2010   Journal of Solid State Chemistry
doi:10.1016/j.jssc.2010.05.029 
[ref=26]

via crossref
Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol–gel template process
Jie Wei, Desheng Xue, Yan Xu
2008   Scripta Materialia
doi:10.1016/j.scriptamat.2007.09.001 
[ref=27]

via crossref
Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods
Dimple P. Dutta, O. D. Jayakumar, A. K. Tyagi, K. G. Girija, C. G. S. Pillai, G. Sharma
2010   Nanoscale
doi:10.1039/c0nr00100g  pmid:20648341 
[ref=28]

via crossref
Preparation and photoabsorption characterization of BiFeO3 nanowires
F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J.-M. Liu, Z. F. Ren
2006   Applied Physics Letters
doi:10.1063/1.2345825 
web.archive.org [PDF]
[ref=29]

via crossref
Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning
S. H. Xie, J. Y. Li, Roger Proksch, Y. M. Liu, Y. C. Zhou, Y. Y. Liu, Y. Ou, L. N. Lan (+ more)
2008   Applied Physics Letters
doi:10.1063/1.3040010 
[ref=30]

via crossref
Interfacial Charge Induced Magnetoelectric Coupling at BiFeO3/BaTiO3 Bilayer Interface
Rekha Gupta, Sujeet Chaudhary, R. K. Kotnala
2015   ACS Applied Materials and Interfaces
doi:10.1021/am509055f  pmid:25856737 
Showing 1 - 30 of 110 references  next »