Sobre a clássica função de Mittag-Leffler release_52apvbahqvfu3osid63mcpkm2a

by Edmundo Capelas de Oliveira

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 67 references (in 77ms)
[b0]

via grobid
Ravi P. Agarwal, A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci. Paris 236, 2031-2032 (1953).
[b1]

via grobid
Ernest William Barnes, A new development in the theory of the hypergeometric functions, Proc. London Math. Soc., 6, 141-177, (1908).
[b2]

via grobid
Ralph Philip Boas Jr., Entire Functions, Academic Press. Inc., Publishers, NY (1954).
[b3]

via grobid
Edmundo Capelas de Oliveira e Waldyr Alves Rodrigues Jr., Funções Analíti- cas com Aplicações, Editora Livraria da Física, São Paulo (2005).
[b4]

via grobid
Edmundo Capelas de Oliveira, Funções Especiais com Aplicações, Segunda Edição, Editora Livraria da Física, São Paulo (2012).
[b5]

via grobid
Edmundo Capelas de Oliveira, Francesco Mainardi, and Jayme Vaz Jr., Frac- tional models of anomalous relaxation based on the Kilbas and Saigo function, Meccanica, 49, 2049-2060 (2014).
[b6]

via grobid
Edmundo Capelas de Oliveira, Solved Exercises in Fractional Calculus, Studies in Systems, Decision and Control, Springer, Switzerland (2019).
[b7]

via fuzzy
Fractional Calculus via Laplace Transform and its Application in Relaxation Processes
E. Capelas de Oliveira, S. Jarosz, J. Vaz
2018   Communications in nonlinear science & numerical simulation
doi:10.1016/j.cnsns.2018.09.013 
[b8]

via grobid
Eliana Contharteze Grigoletto, Equações Diferenciais Fracionárias e as Fun- ções de Mittag-Leer, Tese de Doutorado, Unicamp, Campinas, (2014).
[b9]

via grobid
Lokenath Debnath and Dambaru Bhatta, Integral Transform and Their Appli- cations, Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, (2007).
[b10]

via grobid
M. M. Dzherbashian, On the asymptotic expansion of a function of Mittag- Leer type, Akad. Nauk Armjan. SSR Doklady 19, 65-72 (1954, em Russo).
[b11]

via grobid
M. M. Dzherbashian, On integral transform generated by the generalized Mittag-Leer function, Izv. Akad. Nauk Armjan. SSR 13, 21-63 (1960, em Russo).
[b12]

via grobid
Albert Edrei, Edward B. Sa and Richard Steven Varga, Zeros of Sections of Power Series, Lecture Notes in Mathematics, (A. Dold and B. Eckmann, eds), Springer-Verlag, Heidelberg, (1983).
[b13]

via grobid
Arthur Erdélyi, Hans Heinrich Wilhelm Magnus, Fritz Oberhettinger, and Francesco Giacomo Tricomi, Higher Transcendental Functions (Bateman Ma- nuscript Project), Volumes 13, McGraw-Hill Books Co., New York (1953).
[b14]

via grobid
No Capítulo XVIII do terceiro volume, dedicado à uma miscelânea de funções, é apresentada a função de Mittag-Leer.
[b15]

via grobid
Rubens de Figueiredo Camargo, Jayme Vaz Jr., and Edmundo Capelas de
[b16]

via grobid
Oliveira, On the generalized Mittag-Leer function and its application in frac- tional telegraph equation, Math. Phys. Anal. Geom., 15, 1-16 (2012).
[b17]

via grobid
Rubens de Figueiredo Camargo, Ary Orozimbo Chiacchio, and Edmundo Ca- pelas de Oliveira, One-sided and two-sided Green?s functions, Boundary Value Problems, 2013:45 (2013).
[b18]

via grobid
Rubens de Figueiredo Camargo e Edmundo Capelas de Oliveira, Cálculo Fra- cionário, Editora Livraria da Física, São Paulo, (2015).
[b19]

via grobid
Charles Fox, The G and H functions as symmetrical Fourier kernel, Trans. Amer. Math. Soc., 98, 395-429 (1961).
[b20]

via grobid
Tord Ganelius, The zeros of the partial sums of power series, Duke Math. J. 30, 533-540 (1963).
[b21]

via grobid
Roberto Garrappa, Numerical evaluation of two and three parameters Mittag- Leer functions, SIAM J. Numer. Anal., 53, 1350-1369 (2015).
[b22]

via grobid
Rudolf Goreno, Joulia Loutchko, Yuri Luchko, Computation of the Mittag- Leer function E α,β (z) and its derivatives, Frac. Cal. & Appl. Anal., 5, 491- 518 (2002). (Corrections) 6, (2013).
[b23]

via grobid
Rudolf Goreno, Anatoly Alexandrovich Kilbas, Francesco Mainardi, and Ser- gei V. Rogosin, Mittag-Leer Functions, Related Topics and Applications, Springer Monographs in Mathematics, Heidelberg, (2014).
[b24]

via grobid
Godfrey Harold Hardy, Gösta Mittag-Leer, 1846-1927, Proc. R. Soc. London A., V-VII, 119 (1928).
[b25]

via grobid
Mittag-Leffler Functions and Their Applications
H. J. Haubold, A. M. Mathai, R. K. Saxena
2011   Journal of Applied Mathematics
doi:10.1155/2011/298628 
web.archive.org [PDF]
[b26]

via grobid
Einar Carl Hille and Jacob David Tamarkin, On the theory of linear integral equations, Ann. Math., 31, 479-528 (1930).
[b27]

via grobid
Pierre Humbert, Quelques résultats relatifs à la fonction de Mittag-Leer, C. R. Acad. Sci. Paris 236, 1467-1468 (1953).
[b28]

via grobid
Pierre Humbert, and Ravi P. Agarwal, Sur la fonction de Mittag-Leer et quelquenes de ses généralisationes, Bull. Sci. 77, 180-185 (1953).
[b29]

via grobid
Virginia Kiryakova, Multiindex Mittag-Leer functions, related Gelfond- Leontiev operators and Laplace type integral transforms, Fract. Cal. Appl. Anal. 2, 445-462 (1999) and Multiple (multiindex) Mittag-Leer functions and rela- tions to generalized fractional calculus, J. Comput. Appl. Math. 118, 241-259 (2000).
Showing 1 - 30 of 67 references  next »