Chain-Forming Zintl Antimonidcs as Novel Thermoelectric Materials release_4ghcwcp4nrdmrcsg2fwz3qohay

by Alexandra Zevalkink

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 180 references (in 106ms)
[b0]

via grobid
C. B. Vining, Thermoelectric properties of pressure-sintered SiGe thermoelec- tric alloys, J. Appl. Phys 69, 4333-4340 (1991).
[b1]

via fuzzy
Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride
Yanzhong Pei, Nicholas A. Heinz, Aaron LaLonde, G. Jeffrey Snyder
2011   Energy & Environmental Science
doi:10.1039/c1ee01928g 
web.archive.org [PDF]
[b2]

via grobid
Y. Pei, et al., Synthesis and thermoelectric properties of K y Co 4 Sb 12 , Appl. Phys. Lett. 89, 221107 (2006).
[b3]

via grobid
C. A. Cox, et al., Structure, heat capacity, and high-temperature thermal prop- erties of Yb 14 Mn 1−x Al x Sb 11 , Chem. Mater. 21, 1354-1360 (2009).
[b4]

via fuzzy
Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery
Alex Zevalkink, Eric S. Toberer, Wolfgang G. Zeier, Espen Flage-Larsen, G. Jeffrey Snyder
2011   Energy & Environmental Science
doi:10.1039/c0ee00517g 
web.archive.org [PDF]
[b5]

via fuzzy
Characterization and analysis of thermoelectric transport inn-typeBa8Ga16−xGe30+x
Andrew F. May, Eric S. Toberer, Ali Saramat, G. Jeffrey Snyder
2009   Physical Review B
doi:10.1103/physrevb.80.125205 
[b6]

via grobid
G. A. Slack, Solid State Physics, vol. 34 (Academic Press, New York, 1979).
[b7]

via fuzzy
Phonon engineering through crystal chemistry
Eric S. Toberer, Alex Zevalkink, G. Jeffrey Snyder
2011   Journal of Materials Chemistry
doi:10.1039/c1jm11754h 
web.archive.org [PDF]
[b8]

via grobid
G. Cordier, H. Schafer, M. Stelter, Perantimonidogallate und Indate: zur Ken- ntnis von Ca 5 Ga 2 Sb 6 , Ca 5 In 2 Sb 6 , Sr 5 In 2 Sb 6 , Z. Naturforsch., B 33, 5-8 (1986).
[b9]

via fuzzy
The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation
Eric S. Toberer, Alexandra Zevalkink, Nicole Crisosto, G. Jeffrey Snyder
2010   Advanced Functional Materials
doi:10.1002/adfm.201000970 
[b10]

via grobid
G. Cordier, M. Stelter, Sr 5 Al 2 Sb 6 und Ba 5 In 2 Sb 6 : zwei neue Zintlphasen mit unterschiedlichen Baenderanionen, Z. Naturforsch 43b, 463-466 (1988).
[b11]

via grobid
G. Cordier, H. Schaefer, M. Stelter, Ca 3 AlSb 3 und Ca 5 Al 2 Bi 6 , zwie neue Zintl- phasen mit kettenförmigen Anionen, Z. Naturforsch 39b, 727-732 (1984).
[b12]

via grobid
G. Cordier, E. Czech, M. Jakowski, H. Schaefer, Zintlphasen mit komplexen Anionen: zur Kenntnis von Ca 5 Al 2 Sb 6 und Ca 3 Al 2 As 4 , Rev. Chemie Minerale 18, 9-18 (1981).
[b13]

via grobid
G. Cordier, M. Stelter, H. Schaefer, Zintl phases with complex anions -data on Sr 6 Al 2 Sb 6 , J. of Less Common Metals 98, 285-290 (1984).
[b14]

via fuzzy
Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
Lon E. Bell
2008   Science
doi:10.1126/science.1158899  pmid:18787160 
web.archive.org [PDF]
[b15]

via grobid
G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics -Basic principles and new materials developments (Springer, Heidelberg, Germany, 2001).
[b16]

via grobid
F. J. DiSalvo, Thermoelectric cooling and power generation, Science 285, 703- 706 (1999).
[b17]

via grobid
G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature Mater. 7, 105-114 (2008).
[b18]

via grobid
Y. Pei, et al., Convergence of electronic bands for high performance bulk ther- moelectrics, Nature 473, 66-9 (2011).
[b19]

via fuzzy
High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping
Yanzhong Pei, Jessica Lensch-Falk, Eric S. Toberer, Douglas L. Medlin, G. Jeffrey Snyder
2010   Advanced Functional Materials
doi:10.1002/adfm.201000878 
[b20]

via grobid
E. S. Toberer, et al., Traversing the metal-insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb 14 Mn 1−x Al x Sb 11 , Adv. Funct. Mater. 18, 2795-2800 (2008).
[b21]

via grobid
S. K. Bux, et al., Nanostructured bulk silicon as an effective thermoelectric material, Adv. Funct. Mater. 19, 2445-2452 (2009).
[b22]

via grobid
A. F. May, D. J. Singh, G. J. Snyder, Influence of band structure on the large thermoelectric performance of lanthanum telluride, Phys. Rev. B 79, 153101 (2009).
[b23]

via grobid
S. M. Kauzlarich, ed., Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH Publishers, Inc, New York, 1996).
[b24]

via grobid
F. Laves, Eduard Zintls Arbeiten uber die Chemie und Struktur von Legierun- gen, Naturwiss 29 (1941).
[b25]

via grobid
E. Zintl, Intermetallische Verbindungen, Angew. Chem. 52 (1939).
[b26]

via grobid
W. Klemm, Centenary lecture -metalloids and their compounds with the alkali metals, Proc. Chem. Soc. London 12, 329 (1958).
[b27]

via grobid
R. Hoffmann, A Chemist's View of Bonding in Extended Structures (VCH Pub- lishers, Inc, Weinheim New York, 1988).
[b28]

via fuzzy
Bonding Patterns in Intermetallic Compounds
Reinhard Nesper
1991   Angewandte Chemie International Edition in English
doi:10.1002/anie.199107891 
[b29]

via fuzzy
Classification of the crystal structures of intermetallic phases according to building principles and properties
W.B. Pearson
1985   Journal of the Less Common Metals
doi:10.1016/0022-5088(85)90118-3 
Showing 1 - 30 of 180 references  next »