Chain-Forming Zintl Antimonidcs as Novel Thermoelectric Materials
release_4ghcwcp4nrdmrcsg2fwz3qohay
by
Alexandra Zevalkink
References
NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.Showing 1 - 30 of 180 references (in 106ms) | ||
---|---|---|
[b0] via grobid |
C. B. Vining, Thermoelectric properties of pressure-sintered SiGe thermoelec- tric alloys, J. Appl. Phys 69, 4333-4340 (1991).
| |
[b1] via fuzzy |
Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride
Yanzhong Pei, Nicholas A. Heinz, Aaron LaLonde, G. Jeffrey Snyder 2011 Energy & Environmental Science doi:10.1039/c1ee01928g |
web.archive.org [PDF]
|
[b2] via grobid |
Y. Pei, et al., Synthesis and thermoelectric properties of K y Co 4 Sb 12 , Appl. Phys. Lett. 89, 221107 (2006).
| |
[b3] via grobid |
C. A. Cox, et al., Structure, heat capacity, and high-temperature thermal prop- erties of Yb 14 Mn 1−x Al x Sb 11 , Chem. Mater. 21, 1354-1360 (2009).
| |
[b4] via fuzzy |
Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery
Alex Zevalkink, Eric S. Toberer, Wolfgang G. Zeier, Espen Flage-Larsen, G. Jeffrey Snyder 2011 Energy & Environmental Science doi:10.1039/c0ee00517g |
web.archive.org [PDF]
|
[b5] via fuzzy |
Characterization and analysis of thermoelectric transport inn-typeBa8Ga16−xGe30+x
Andrew F. May, Eric S. Toberer, Ali Saramat, G. Jeffrey Snyder 2009 Physical Review B doi:10.1103/physrevb.80.125205 | |
[b6] via grobid |
G. A. Slack, Solid State Physics, vol. 34 (Academic Press, New York, 1979).
| |
[b7] via fuzzy |
Phonon engineering through crystal chemistry
Eric S. Toberer, Alex Zevalkink, G. Jeffrey Snyder 2011 Journal of Materials Chemistry doi:10.1039/c1jm11754h |
web.archive.org [PDF]
|
[b8] via grobid |
G. Cordier, H. Schafer, M. Stelter, Perantimonidogallate und Indate: zur Ken- ntnis von Ca 5 Ga 2 Sb 6 , Ca 5 In 2 Sb 6 , Sr 5 In 2 Sb 6 , Z. Naturforsch., B 33, 5-8 (1986).
| |
[b9] via fuzzy |
The Zintl Compound Ca5Al2Sb6 for Low-Cost Thermoelectric Power Generation
Eric S. Toberer, Alexandra Zevalkink, Nicole Crisosto, G. Jeffrey Snyder 2010 Advanced Functional Materials doi:10.1002/adfm.201000970 | |
[b10] via grobid |
G. Cordier, M. Stelter, Sr 5 Al 2 Sb 6 und Ba 5 In 2 Sb 6 : zwei neue Zintlphasen mit unterschiedlichen Baenderanionen, Z. Naturforsch 43b, 463-466 (1988).
| |
[b11] via grobid |
G. Cordier, H. Schaefer, M. Stelter, Ca 3 AlSb 3 und Ca 5 Al 2 Bi 6 , zwie neue Zintl- phasen mit kettenförmigen Anionen, Z. Naturforsch 39b, 727-732 (1984).
| |
[b12] via grobid |
G. Cordier, E. Czech, M. Jakowski, H. Schaefer, Zintlphasen mit komplexen Anionen: zur Kenntnis von Ca 5 Al 2 Sb 6 und Ca 3 Al 2 As 4 , Rev. Chemie Minerale 18, 9-18 (1981).
| |
[b13] via grobid |
G. Cordier, M. Stelter, H. Schaefer, Zintl phases with complex anions -data on Sr 6 Al 2 Sb 6 , J. of Less Common Metals 98, 285-290 (1984).
| |
[b14] via fuzzy |
Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
Lon E. Bell 2008 Science doi:10.1126/science.1158899 pmid:18787160 |
web.archive.org [PDF]
|
[b15] via grobid |
G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics -Basic principles and new materials developments (Springer, Heidelberg, Germany, 2001).
| |
[b16] via grobid |
F. J. DiSalvo, Thermoelectric cooling and power generation, Science 285, 703- 706 (1999).
| |
[b17] via grobid |
G. J. Snyder, E. S. Toberer, Complex thermoelectric materials, Nature Mater. 7, 105-114 (2008).
| |
[b18] via grobid |
Y. Pei, et al., Convergence of electronic bands for high performance bulk ther- moelectrics, Nature 473, 66-9 (2011).
| |
[b19] via fuzzy |
High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping
Yanzhong Pei, Jessica Lensch-Falk, Eric S. Toberer, Douglas L. Medlin, G. Jeffrey Snyder 2010 Advanced Functional Materials doi:10.1002/adfm.201000878 | |
[b20] via grobid |
E. S. Toberer, et al., Traversing the metal-insulator transition in a Zintl phase: rational enhancement of thermoelectric efficiency in Yb 14 Mn 1−x Al x Sb 11 , Adv. Funct. Mater. 18, 2795-2800 (2008).
| |
[b21] via grobid |
S. K. Bux, et al., Nanostructured bulk silicon as an effective thermoelectric material, Adv. Funct. Mater. 19, 2445-2452 (2009).
| |
[b22] via grobid |
A. F. May, D. J. Singh, G. J. Snyder, Influence of band structure on the large thermoelectric performance of lanthanum telluride, Phys. Rev. B 79, 153101 (2009).
| |
[b23] via grobid |
S. M. Kauzlarich, ed., Chemistry, Structure, and Bonding of Zintl Phases and Ions (VCH Publishers, Inc, New York, 1996).
| |
[b24] via grobid |
F. Laves, Eduard Zintls Arbeiten uber die Chemie und Struktur von Legierun- gen, Naturwiss 29 (1941).
| |
[b25] via grobid |
E. Zintl, Intermetallische Verbindungen, Angew. Chem. 52 (1939).
| |
[b26] via grobid |
W. Klemm, Centenary lecture -metalloids and their compounds with the alkali metals, Proc. Chem. Soc. London 12, 329 (1958).
| |
[b27] via grobid |
R. Hoffmann, A Chemist's View of Bonding in Extended Structures (VCH Pub- lishers, Inc, Weinheim New York, 1988).
| |
[b28] via fuzzy |
Bonding Patterns in Intermetallic Compounds
Reinhard Nesper 1991 Angewandte Chemie International Edition in English doi:10.1002/anie.199107891 | |
[b29] via fuzzy |
Classification of the crystal structures of intermetallic phases according to building principles and properties
W.B. Pearson 1985 Journal of the Less Common Metals doi:10.1016/0022-5088(85)90118-3 | |
|