Improving Rbf Networks Classification Performance By Using K-Harmonic Means release_43x5umlyh5aofarf3d2hcsj6xy

by Z. Zainuddin, W. K. Lye

Entity Metadata (schema)

abstracts[] {'sha1': 'fefd0b89483f3c11c322207d18862119e078e57f', 'content': 'In this paper, a clustering algorithm named KHarmonic\nmeans (KHM) was employed in the training of Radial\nBasis Function Networks (RBFNs). KHM organized the data in\nclusters and determined the centres of the basis function. The popular\nclustering algorithms, namely K-means (KM) and Fuzzy c-means\n(FCM), are highly dependent on the initial identification of elements\nthat represent the cluster well. In KHM, the problem can be avoided.\nThis leads to improvement in the classification performance when\ncompared to other clustering algorithms. A comparison of the\nclassification accuracy was performed between KM, FCM and KHM.\nThe classification performance is based on the benchmark data sets:\nIris Plant, Diabetes and Breast Cancer. RBFN training with the KHM\nalgorithm shows better accuracy in classification problem.', 'mimetype': 'text/plain', 'lang': 'en'}
container
container_id
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Z. Zainuddin', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'W. K. Lye', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
ext_ids {'doi': '10.5281/zenodo.1058165', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': '4l5kat6xurdqbjxguyppi6qhae', 'revision': 'e52f0056-55ec-4c63-a4f8-27f7dae654ce', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 131882, 'md5': 'd133fde2b760643fe083c27d8e5e692d', 'sha1': '386339ef8e315c8b4e62ff2749b197f5380b8d21', 'sha256': 'b062377f1391dc96b9a23b63767e748ea0cbd97a84f576e6e406c290e2945d17', 'urls': [{'url': 'https://zenodo.org/record/1058165/files/2926.pdf', 'rel': 'repository'}, {'url': 'https://web.archive.org/web/20220126170006/https://zenodo.org/record/1058165/files/2926.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['43x5umlyh5aofarf3d2hcsj6xy'], 'releases': None}
filesets []
issue
language en
license_slug CC-BY
number
original_title
pages
publisher Zenodo
refs []
release_date 2010-02-28
release_stage published
release_type article-journal
release_year 2010
subtitle
title Improving Rbf Networks Classification Performance By Using K-Harmonic Means
version
volume
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id krzrquc54baklclkiei36bwi6y
As JSON via API

Extra Metadata (raw JSON)

datacite.license [{'rights': 'Creative Commons Attribution 4.0', 'rightsUri': 'https://creativecommons.org/licenses/by/4.0'}, {'rights': 'Open Access', 'rightsUri': 'info:eu-repo/semantics/openAccess'}]
datacite.metadataVersion 1
datacite.relations [{'relatedIdentifier': '10.5281/zenodo.1058164', 'relatedIdentifierType': 'DOI', 'relationType': 'IsVersionOf'}]
datacite.resourceType Journal article
datacite.resourceTypeGeneral Text
datacite.subjects [{'subject': 'Neural networks'}, {'subject': 'Radial basis functions'}, {'subject': 'Clusteringmethod'}, {'subject': 'K-harmonic means.'}]
release_month 2