Degradation of Paracetamol and Its Oxidation Products in Surface Water by Electrochemical Oxidation release_3535ad5mxrfs7naplf7jhcymsa

by Miguel Ángel López Zavala, Camila Renee Jaber Lara

Published in Environmental Engineering Science by Mary Ann Liebert Inc.

2018   Volume 35, Issue 11, p1248-1254

Abstract

Paracetamol and its toxic transformation products have been found in surface water, wastewater, and drinking water. Effective methods to degrade these products must be found to reduce their detrimental effects on microorganisms in aquatic systems and minimize the concern on human health. Thus, this study looked into the electrochemical oxidation of paracetamol and its oxidation products on surface water, and results were compared with those of paracetamol synthetic solution oxidation. Degradation of paracetamol was conducted using a stainless steel electrode cell, a pH of 3, and direct current densities of 5.7 mA/cm2 (6 V) and 7.6 mA/cm2 (12 V). For both current densities applied, the pharmaceutical and its oxidation products observed by high-performance liquid chromatography with diode-array detection (HPLC-DAD) at 254 nm were totally degraded. Faster degradation of paracetamol was observed at a higher current density. Indeed, 95% of paracetamol was oxidized in only 15 min at the 7.6 mA/cm2 current density. In comparison to the paracetamol synthetic solution's oxidation, degradation of paracetamol was faster in the surface water than the synthetic solution, at 5.7 mA/cm2. Nevertheless, at 7.6 mA/cm2, total degradation of paracetamol in surface water was delayed up to 40 min, versus 7.5 min in the synthetic solution. Three oxidation products, observed by HPLC-DAD at 254 nm, were fully oxidized. In comparison with the paracetamol synthetic solution, degradation of the oxidation products in surface water was faster than in synthetic solutions for both current densities. Furthermore, the 7.6 mA/cm2 current density resulted in faster degradation of oxidation products. Results obtained from this work are promising for practical applications because short reaction times and low current densities are needed for degradation of paracetamol and its oxidation products. These densities can be potentially supplied by photovoltaic cells.
In text/plain format

Archived Files and Locations

application/pdf  427.7 kB
file_kkdybfp3wjdhlkh32f6jllqzca
web.archive.org (webarchive)
pdfs.semanticscholar.org (aggregator)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2018-06-20
Language   en ?
Container Metadata
Not in DOAJ
In Keepers Registry
ISSN-L:  1092-8758
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 1d77c96c-915a-4134-9de2-ea2f47b273d9
API URL: JSON