EXACT SOLUTIONS FOR THE SINGULARLY PERTURBED RICCATI EQUATION AND EXACT WKB ANALYSIS
release_2ne52ynm55hcfdti3sxi2gne3m
Abstract
<jats:title>Abstract</jats:title>
The singularly perturbed Riccati equation is the first-order nonlinear ordinary differential equation <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763022000381_inline1.png" />
<jats:tex-math>
$\hbar \partial _x f = af^2 + bf + c$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> in the complex domain where <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763022000381_inline2.png" />
<jats:tex-math>
$\hbar $
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> is a small complex parameter. We prove an existence and uniqueness theorem for exact solutions with prescribed asymptotics as <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763022000381_inline3.png" />
<jats:tex-math>
$\hbar \to 0$
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula> in a half-plane. These exact solutions are constructed using the Borel–Laplace method; that is, they are Borel summations of the formal divergent <jats:inline-formula>
<jats:alternatives>
<jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0027763022000381_inline4.png" />
<jats:tex-math>
$\hbar $
</jats:tex-math>
</jats:alternatives>
</jats:inline-formula>-power series solutions. As an application, we prove existence and uniqueness of exact WKB solutions for the complex one-dimensional Schrödinger equation with a rational potential.
In application/xml+jats
format
Archived Files and Locations
application/pdf 1.0 MB
file_guimms6dmbcozfgub6gb2jyiw4
|
www.cambridge.org (publisher) web.archive.org (webarchive) |
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar