A layered-analysis of the features in higher education data set release_m4sibkemnfhzxogvizzzerwj5q [as of editgroup_fbgjykyjzfacbdnmuvl7q5oooe]

by Eslam Abou Gamie, M. Samir Abou El-Seoud, Mostafa A. Salama

References

This release citing other releases
  1. Maimon, O. &. (2009). Introduction to knowledge discovery and data mining. In Data Mining and Knowledge Discovery Handbook. (DOI: 10.1007/978-0-387-09823-4_1)
  2. Witten, I. H. (2018). Data Mining: Practical machine learning. TEM Journal, 617--625.
  3. Mrinal Pandey, S. T. (2014). A Comparative Study of Ensemble Methods for. International Journal of Computer Applications, 26--32.
  4. Aguiar, E. C. (2014). Engagement vs performance usig electronic porfolios to predict first semester engineering student rentention. (pp. 103--112). ACM.
  5. Mushtaq Hussain, Wenhao Zhu, Wu Zhang, and Syed Muhammad Raza Abidi, "Student Engagement Predictions in an e-Learning System and Their Impact on Student Course Assessment Scores," Computational Intelligence and Neuroscience, vol. 2018, Article ID 6347186, 21 pages, 2018. https://doi.org/10.1155/2018/6347186. (DOI: 10.1155/2018/6347186)
  6. Website {Open University Learning Analyticsdataset}, {https://analyse.kmi.open.ac.uk/open_dataset}.
  7. Hlosta, M., Zdrahal, Z., & Zendulka, J. (2017, March). Ouroboros: early identification of at-risk students without models based on legacy data. In Proceedings of the Seventh International Learning Analytics & Knowledge Conference (pp. 6--15). ACM. (DOI: 10.1145/3027385.3027449)
  8. Pandey, M., & Taruna, S. (2014). A comparative study of ensemble methods for students' performance modeling. International Journal of Computer Applications, 103(8). (DOI: 10.5120/18095-9151)
  9. Wang, B., & Pineau, J. (2016). Online bagging and boosting for imbalanced data streams. IEEE Transactions on Knowledge & Data Engineering, (1), 1--1.Article submitted 15November 2017. Published as resubmitted by the authors 29 November 2017. (DOI: 10.1109/tkde.2016.2609424)
  10. https://analyse.kmi.open.ac.uk/#open-dataset
  11. Wang, F., Li, Z., He, F., Wang, R., Yu, W., & Nie, F. (2019). Feature Learning Viewpoint of AdaBoost and a New Algorithm. arXiv preprint arXiv:1904.03953.
  12. Zhang, S. (2016). Data partitioning view of mining big data. arXiv preprint arXiv:1611.09691.
  13. Pandey, M., & Taruna, S. (2014). A comparative study of ensemble methods for students' performance modeling. International Journal of Computer Applications, 103(8). (DOI: 10.5120/18095-9151)