A sage implementation for DD-finite functions release_mue55lmlizdlfch73olxw3twma [as of editgroup_54h4tuopu5h43fgpt4g45t62nq]

by Antonio Jiménez-Pastor

References

This release citing other releases
  1. Andrews, G. E., Askey, R., and Roy, R. Special Functions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1999. (DOI: 10.1017/cbo9781107325937)
  2. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.16 of 2017-09-18. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.
  3. Jiménez-Pastor, A., and Pillwein, V. A computable extension for holonomic functions: DD-finite functions. J. Symbolic Comput. (2018), 16.
  4. Jiménez-Pastor, A., and Pillwein, V. Algorithmic Arithmetics with DD-Finite Functions. In Proceedings of the 2018 ACM on International Symposium on Symbolic and Algebraic Computation (New York, NY, USA, 2018), A. Carlos, Ed., ISSAC '18, ACM, pp. 231--237. (DOI: 10.1145/3208976.3209009)
  5. Jiménez-Pastor, A., Pillwein, V., and Singer, M. F. Some structural results on Dn-finite functions. Tech. rep., Doctoral Program Computational Mathematics, Preprint series, 2019. Submitted to journal.
  6. Kauers, M., Jaroschek, M., and Johansson, F. Ore Polynomials in Sage. In Computer Algebra and Polynomials (2014), J. Gutierrez, J. Schicho, and M. Weimann, Eds., Lecture Notes in Computer Science, pp. 105--125.
  7. Kauers, M., and Paule, P. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, 1st ed. Springer Publishing Company, Incorporated, 2011.
  8. Koutschan, C. Advanced Applications of the Holonomic Systems Approach. PhD thesis, RISC-Linz, Johannes Kepler University, 9 2009.
  9. Rainville, E. D. Special Functions, first ed. Chelsea Publishing Co., Bronx, N.Y., 1971.
  10. Salvy, B., and Zimmermann, P. Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software 20, 2 (1994), 163--177. (DOI: 10.1145/178365.178368)
  11. Stanley, R. P. Differentiably finite power series. European Journal of Combinatorics 1, 2 (1980), 175--188. (DOI: 10.1016/s0195-6698(80)80051-5)